²⁴¹Am (n, 2n) Cross-Section Measurements at 14.8 MeV Neutrons

Xie Feng¹, Shi Quanlin¹, Xia Ziheng¹, Fan Jinlong¹, Li Xuesong¹, Yu Weixiang², Chen Xiongjun², Ding Youqian², Jiang Wengang¹, Liang Jianfeng¹

> ¹Northwest Institute of NuclearTechnology,Xi'an 710024,China ²China Institute of Atom Energy, Beijing 102413,China

Abstract: The measurement of the cross section of the reaction ${}^{241}\text{Am}(n,2n){}^{240}\text{Am}$ at 14.8 MeV neutrons, has been performed by the activation method. The neutron beam was produced at the Cock-croft Accelerator in China Institute of Atomic Energy, by the ${}^{3}\text{H}(d,n)$ ${}^{4}\text{He}$ reaction, using a Ti-tritiated target. The radioactive target consisted of a 201MBq ${}^{241}\text{Am}$ solution enclosed in a polypropylene tube. A natural Au solution containing about 1 mg Au, was mixed with ${}^{241}\text{Am}$ solution as reference materials for the neutron flux determination. After the end of the irradiation, the samples were placed into lead shield tube. The activity induced at the ${}^{241}\text{Am}$ target and the reference materials Au, was measured off-line by a well-type HPGe detector whose efficiency was calibrated by ${}^{240}\text{Am}$ and ${}^{241}\text{Am}$ activity standard source.

Keywords: Americium-241, Aurum-197, activation, cross sections, HPGe

Accurate neutron-induced reaction cross-section data are required for many practical applications, especially to predict reliably the behavior of reactor cores in both present and future fission reactors. Because the nucleus ²⁴¹Am is one of the most abundant isotopes in spent nuclear fuel^[1], as well as one of the most highly radiotoxic of all actinides, accurate data are required to study the possible transmutation of long-lived Radioactive waste with advanced high-neutron-energy reactors. Theoretical predictions and evaluations (see Fig. 1.), differ in some energy regions by more than an order of magnitude^[2], so it is necessary that cross sections of ²⁴¹Am(n,2n)²⁴⁰Am are accurately measured. In this work, the cross section of the reaction ²⁴¹Am (n,2n)²⁴⁰Am has been determined at 14.8 MeV, by the activation method.

The measurements were carried out at the Cock-croft Accelerator in China Institute of Atomic Energy. The neutron beams were produced by the ${}^{3}H(d,n)$ ${}^{4}He$ reaction at a flux of the order of $10^{8} n/(\text{cm}^{2} \cdot \text{sec})$. The 300 μ A deuteron beam enters through a 0.5 mm Mo foil into Ti-tritiated target. The absolute flux of the beam was obtained with respect to the ${}^{197}\text{Au}(n,2n)^{196}\text{Au}$ reference reactions were also taken into account. The variation of the neutron beam was monitored by the associated particle method for the T $(d,n)^{4}$ He reaction was used. The Au-Si detector was used to detect ${}^{4}\text{He}$ particles.

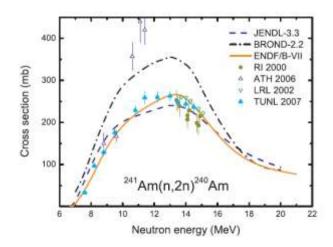


FIG. 1. Theoretical predictions and evaluations of cross sections of $^{241}Am(n,2n)^{240}Am^{[2]}$.

The measurements were carried out at the Cock-croft Accelerator in China Institute of Atomic Energy. The neutron beams were produced by the ${}^{3}H(d,n)$ ${}^{4}He$ reaction at a flux of the order of 10⁸ $n/(\text{cm}^{2} \cdot \text{sec})$. The 300 μ A deuteron beam enters through a 0.5 mm Mo foil into Ti-tritiated target. The absolute flux of the beam was obtained with respect to the ${}^{197}\text{Au}(n,2n)^{196}\text{Au}$ reference reactions were also taken into account. The variation of the neutron beam was monitored by the associated particle method for the T $(d,n)^{4}$ He reaction was used. The Au-Si detector was used to detect ${}^{4}\text{He}$ particles.

The Americium target consisted of a 201 MBq ²⁴¹Am source in the form of solution, encapsulated in polypropylene tube. A natural Au solution, containing about 1 mg Au, was mixed with ²⁴¹Am solution as reference materials for the neutron flux determination. The samples were irradiated at 0⁰, at a distance of 1 cm from the center of the cell. A schematic representation of the experimental arrangement is shown in Fig. 2. Monte-Carlo calculation has been also employed to determine the energy and flux distribution of neutrons on each sample, and the contribution of scattered neutrons.

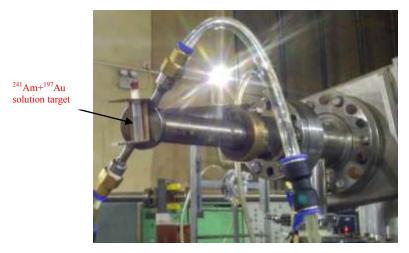


FIG. 2. A schematic representation of the experimental arrangement.

After the 9.5 h irradiation, the samples were placed into lead shield tube (seen in FIG.3) and transferred to the gamma spectroscopy system, based on a well-type HPGe detector. The activities of ²⁴⁰Am and ¹⁹⁶Au in the sample were determined by using the counts in the full energy peak of the γ -ray transition. The efficiency of the HPGe detector was determined by ²⁴⁰Am standard source. The γ -ray spectra of irradiated sample are shown in FIG.4.

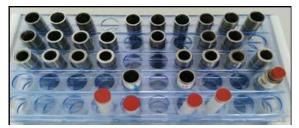


FIG. 3. A photo of lead shield tubes and samples.

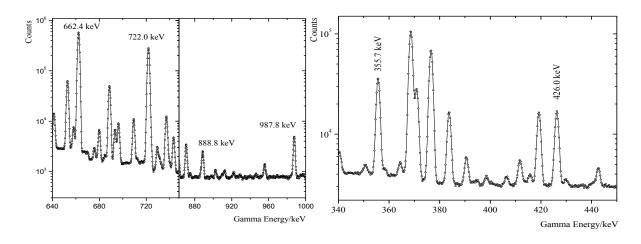


FIG. 4. The γ -ray spectra of irradiated sample for ²⁴¹Am/²⁴⁰Am (left) and ¹⁹⁶Au (right).

The cross section of 241 Am(*n*,2*n*) was calculated from the following activation formula:

$$\sigma_{\rm Am} = \frac{N_{240} N_{197} \lambda_{240} \left(1 - e^{-\lambda_{196}t}\right)}{N_{241} N_{196} \lambda_{196} \left(1 - e^{-\lambda_{240}t}\right)} \sigma_{\rm Au}$$

where σ_{Am} and σ_{Au} are the cross sections for the ²⁴¹Am(*n*,2*n*) and ¹⁹⁷Au(*n*,2*n*) reactions, N_{240} and N_{196} are the atom number of ²⁴⁰Am and ¹⁹⁶Au which are determined by the gamma spectroscopy system, N_{241} and N_{197} are the number of target nuclei of ²⁴¹Am and ¹⁹⁷Au, λ_{240} and λ_{196} are decay constant of ²⁴⁰Am and ¹⁹⁶Au, t is irradiation time.

 241 Am(*n*, 2*n*)²⁴⁰Am cross section at $E_n = 14.8$ MeV is calculated. The result is 269(39) mb, which is in agreement with evaluations of ENDF/B-VII.1 (259 mb).

REFERENCES

1. Taczanowski S., et al., Applied Energy 75, 97, (2003).

2. C. Sage, et al., Physical Review C, 81, 2010: 064604.